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Abstract

Subject to the same total expected cost (taken as proportional to effective sample size), a commonly used es-

timator based on k independent interpenetrating sub-samples of equal size selected according to SRSWOR method
has been compared with the usual estimators based on (i) SRSWR and (ii) SRSWOR, and is found to be more ef-
ficient than the former but less than the latter. This estimator has also been compared for the same expected cost

with an estimator based on ‘dependent’ sub-samples in interpenetrating sub-sampling.

Numerical results on the relative efficiencies of the above and some other estimators are presented and the ef-

fect of showing consideration to non-integer sample sizes has been studied.

1. Introduction

The usual estimator obtained by the technique of in-
terpenetrating sub-samples (also khdwn as replicated
sampling) has been compared with the estimators based
on a single sample drawn by employing (i) simple ran-
dom' sampling with replacement (SRSWR) and (ii)
simple random sampling without replacement
(SRSWOR). Singh and Bansal (1975) studied the rela-
tive efficiencies of estimators based on single sample
drawn with SRSWOR and on independent replicated
samples drawn with SRSWOR keeping the overall effec-
tive sample sizes equal for both the schemes. We con-
sider here their relative efficiencies against the sample
mean in SRSWR keeping the average effective sample
size equal, implying thereby that the expected cost,
which is taken proportional to effective sample size, is
the same. Sections 4 and 6 are then devoted to a numeri-
cal comparison of some potentially competing es-

timators. In this connection we have also addressed
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ourselves to the question as to what is the effect of taking
into account the possibility that the (average effective)
sample size is not an integer.

Roy and Singh (1973) proposed an estimator (dis-
cussed in Section 3 of this paper) which is shown by them
to be more efficient than the one under consideration in
interpenetrating sub-sampling. Here, we shall compare
them for the same expected éost taken proportional to

effective sample size.

2. The relative efficiency

- For a population of N units, let Y;j be the value of
some Y-characteristics associated with the jth unit (j =
1,2,..,N). |

An estimator of the population mean

N
YN= X Yj/N
ji=1

generally used in applying the technique of independent
interpenetrating sub-sampling briefly TIIS (with K sub-
samples, each of size n:/k; drawn with SRSWOR making
up a sample of size n’) is
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k
yr= 2yi/k
i=1
where yi is the arithmetic mean of n'/k observations in
the i th sub-sample selected with SRSWOR.

2.1 TIIS Versus SRSWR

It is well-known that for a sample of size nin SRSWR the
average effective sample size is
E(v) = N[1- (- UN) "} @11)
Also for k independent replicated samples taken as
above, the average effective size is
"E(v’) = N[1-(1-n"/kN) ¥
Equating E(v) with E(v"), we determine n’ interms
of the other parameter. Then, the relative efficiency of
the sample for SRSWR with respect to yr works out as
n (1-1/N) "k (l-a)B'laB .
RE. = e =
k(N-D[1-1-1/n)"¥] 1-(1-0) B

= E1 (say)

(212)

where @ = /N and g = n/k.
THEOREM 2.1.1 The relative efficiency expressed by
(2.1.2) is always less than or equal to 1.
PROOF The relative efficiency will be less than or equal
to 1if

(1) op < 1- (1-0)P

or (1-o)tep < (o) P-1
Since 0 < a < 1, we expand both sides and collect the
coefficients of powers of a. Thus, we get

o (P+1)E+2)..(B+r-1)
B of

r=2 r!

-1 20,

which always holds as g = 1.
It can, therefore, be stated that the TIIS estimator
yris more efficient than the usual SRSWR estimator.
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It is easy to see that the relative efficiency expressed
by (2.1.2) does not change when n and k vary in such a
manner that n/k is a fixed value for a given N. We have
the following theorem regarding the behaviour of the
relative efficiency..
THEOREM 2.1.2 The relative efficiency expressed by
(21.2)is

(i) strictly increasing with k for fixed values of n and
N

(ii) strictly decreasing with n for fixed values of k and
N. :
PROOF In order to prove the two parts of the theorem,
we differentiate (2.1.2) with respect to B, and show that

dEx

------- < 0. Differentiation yields

B a(1-0P [log-w + 1- (1)P]

ap [1-(1-a)fp

Now, let
1-1a)P =y
so that
 log(1-)P + 1- (1-0)P = log(1y) +y.
Sincefor0 <y <1
y + log (1-y) <0,
it follows immediately that
d E1
ap
In order to enable the reader to get some ideh about
the relative efficiency E1 of estimator and also to il-
lustrate simultaneously the above theorem, we make

simple numerical investigations.



Making usé of (2.1.2), we have prepared the follow-
ing table for N = 50.

n/k 2 3 4
6 9790 9899 9949
10 9600 9766 9849
15 9356 9600 9724
20 9116 9432 9600
[See also Section 4.] |

2.2 TIIS versus SRSWOR

The relative efficiency of the sample mean based on
n’ draws in SRSWOR with respect to the TIIS estimator
yT, both based on the same average effective size is
n’'(1-n/N) VK (1—01’)[3,'1 o'p
RE. = =
k(N-m') [1-(1-0/N)) 1-(1-00)P

= E2(say)

(2.2.1)
where o’ = n’/Nand p’ = 1/k.

As has been shown by Singh and Bansal (1975), the
relative efficiency expressed by (2.2.1) is greater than or
equal to 1. '
THEOREM 2.2.1 The relative efficiency expressed by
(2.2.1) is strictly increasing with

(i) k for fixed values of n’ and N

(i) n’ for fixed values of k and N.

PROQOF Parts (i) and (ii) of the .theorem easily follow
by differentiating (2.2.1) with respect to g’ and o respec-
tively. In view of the analogy between the expressions
(2.1.2) and (2.2.1), we easily obtain as in the proof of the
Theorem 2.1.2

3 Ez

and further
9E2  p-2)F?[lap - (1-0)P)
o _ -@e)PP

Since

1-op’ - (1-)P' = 1- (@/NK) - (1 - /N)VE
= ((k-1)/2k?) (0/N)? + ((k-1) (2k-1)/6k") (n'/N)>
+ .y

it is then evident that

aE2

ask > 1.
This completes the proof of the theorem.
We compute below E2 from (2.2.1) for N = 50.

/K 2 3 4
6 10330 1.0452 1.0498
10 1.0590 1.0792 1.0894
15 1.0976 11316 11488
20 1.1455 1.1972

1.2235

The table points to the fact that TIIS can be considered
fairly close to SRSWOR for suitably chosen number k
and ratio n’/N. This encourages us to be inclined
favourably towards TIIS which is additionally and intrin-
sically endowed with certain desirable properties. [See
also Section 4.]

3. Interpenetrating sub-samples - with and without re-
placement

Under the same cost consideration as above, the
usual estimator in TIIS will now be compared with an es-
timator based on sample obtained in such a manner that,
in contradistinction to TIIS, sub-samples drawn accord- -
ing to SRSWOR are not replaced ( and hence there is
no common unit between the sub-samples). This sam-
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pling scheme amounts, in practice, to drawing lk units
by SRSWOR and then assigning the first | units to sub-
sample 1, the second | units to sub-sample 2 and so on;
or else Lk units may be allotted to the k sub-samples in a
prespecified manner. Roy and Singh (1973) have con-
sidered ‘ordered’ and ‘unordered’ estimators based on
these k dependent sub-samples. Since the more efficient
‘unordered’ estimator, as shoen by them, is the same as
the usual SRSWOR estimator, we need to consider, for
the intended comparison with yr, the ‘ordered’ estimator
defined by '

yr' = UNk(t1 + ... + tg)

where t1 = Ny1

C te=1( e+ Y1) + (N (D Dye(r =2,3,...K)
andy; = mean of the i th sub-sample (i = 1,2,.. ., k).

This estimator is unbiased and its variance is given
by

V(rn).= VIKN* [N*- kNI + (73) (k- D] S

N :
where S2 = 1/(N-1) 3, (Y;- Y)?
i=1

Hence, the relative efficiency of y’T with respect to
yrkeeping the average effective size the same is obtained
as -
1[1- (Ik/n) + (23N?)(K2-1)] !
RE. =

3.1)
N[ (- WN)*-1]
THEOREM 3.1 The relative efficiency expressed by
(3.1) is greater than or equal to 1 if
Sk+ v/ 13K +12

N2- (32)

6
which is always satisfied if N > 3/2kl (k = 2).
PROOF Expanding the term in the denominator of

(3.1), we get

28

[1-(k/N) + (Z3N%) (- 1))
RE.=
1+ ((k+1)/2)(UN) + ((k + 1)/2)((k + 2)/3)(1Z/N?) +...
Since
tk+1)/(r+1) <k (r=1),

we have

[1-(N) + (P3N%) (k2 -1)]
RE. >

1+ ((k+1)/2) N1 + (KUN) + (KN + .

1- (WN)) [1- (N) + (23N (& - 1)) !

{1-(k -1)1/2N}

which is greater than or equal to 1if (3.2) is satisfied, and
hence it follows that, subject to the cost consideration
discussed above, y't performs better than yrif N exceeds
32k (k = 2).

It is clear from (3.1) that, for given I/N and k, the
relative efficiency V(yr)/V(y'T) is insensitive to changes
in N. In order to give an idea about the relative efficien-
cy expressed by (3.1), we have prepared a small table for
N = 50.

k=2 k=4
=8 1.0376 1.0588
=12 10536 1.0859
=16 1.0662 1.1101
=20 1.0739 1.1294

It may be noted from the table that the gains of y't over
yr are small unless the sampling ratio and the number of

sub-samples are farge.



4. TIIS, SRSWR and SRSWOR

To have a simultaneous and collective view of the
performance of the estimators in the three sampling
schemes, viz., TIIS, SRSWR and SRSWOR, we may
proceed with the computation of the relative sizes of the
three variances conditioned by the same total expected
cost. We take n draws in SRSWR and then bring about
"a parity in respect of the expected cost, i.c., in terms of
the expected number of distinct units in TIIS and
SRSWOR. :
SRSWOR, we simply have to take the expected number

In order to achieve this in the case of

of distinct units v given by (2.1.1) as the sample size in
SRSWOR and thus we shall get the following variance
N-E (v) 1-@Ny)*
VSRSWOR = s? = s
NE(v) N[1-(1-(UN)"]
We may make use of the variance expressions of Section
2.1 for TIIS and SRSWR, i.e.,
(- amy
VTIs = : s?.
. N [1- (1- (1N) "]

(4.1)

and V srswr = [(N-1)/ (Nn)] S%.

It will not be out of place to consider the perfor-
mance of an estimator which is the avefage of the distinct
values obtained in an SRSWR sample of size n. The
variance of this estimator is known to be

_ - N-1.
VsrswrD) = (§N) 3 (/N)™
ji=1
Denoting the variances V SRSWOR, V SRSWR(D), V THS
and V srRswr by V', Vs, Viand Vg respectively, we
prepare the following table:’

/N = 0.1
R Vv,
N = 50 9600 9701
N = 200 9531 9556
N = 500 9517 9527
N=o 9508 9508
Vyvy
k=2 k=3 k=
N =150 9848 9931 9975
N = 200 9776 9858 9900
N = 500 9762 9844 9885
N = 9752 9835 9876
VyV's
k=2 k=3 k=4
N =50 9748 9665 9624
N = 200 9749 9668 9627
N = 500 9750 9668 9627
N=ow 9750 9668 9627
/N = 02
ViV Vv,
N = 50 9116 9214
N = 200 9054 9078
N = 500 9041 9051
N = 9033 9033
V*3/V*4 ‘
k=2 k=3 k=4
N =50 9600 9766 9848
N = 200 9531 9694 9776
N =.500 9517 9679 9762
N = o 9670 9752

9508



.

Vv

k=2 k=3 k=4
N =50 9495 9335 9256
N = 200 9500 9340 9261
N = 500 9500 9341 9262
N=o 9500 9341 9263

If we think in terms of the same expected cdst for the
sampling schemes where cost is taken as proportional to
the expected number of distinct units, then the following
comments will be in order: '

(1) Inrespect of the efficiency, the TIIS estimator
considered in Section 3 falls between the SRSWOR es-
timator and the usual SRSWR estimator, and its perfor-
mance depends on the factors n/N and k.

(2) For large N, the gain in efficiency attained by
both the SRSWOR estimator and the estimator based on
distinct units in SRSWR over the usual SRSWR es-
timator is hardly different, ‘and itis ﬁé different as
N-> o. This remark emerges analytically, as under the
limit process

N-> o,n-> » and n/N -> fo,

we find that both
v N-1
NS2VsrswrD) = & (/N)™!
i=1
and
[1-(uN)]"
NS2VSRSWOR = --ermmeemmmmenn-

N[1-(1- (I/N)"]

tend to 1/(e’° - 1).

(3) While sampling from a population of given size
N, the relative efficiency V'3/V'4 can be matched with
the relative efficiency V'1/V 4if the ratio /N (n = num-
ber of draws in SRSWRY) on which the latter is based.

This can be seen from the relevant variance expressions
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involved here. An indication of this is available from the -
column V'/V"4 with /N = 0.1 and the column V'3/V'4
withn/N = 02and k = 2.

(4) Given n/N and k, the relative efficiency V'YV
is practically unaffected by a change in the size of the
population. A scrutiny of the relevant variance expres-

sion also points to this effect.

5. Effect of Consideration to non-integer sample sizes

We shall now undertake an investigation with a view
to finding the effect of not taking into account the pos-
sibility of non-integer (average effective) sample sizes in
our }preceding’discussion. In order to make efficiency
comparisons for the same ckpected cost Ramakrishnan
(1969) suggested an unbiased ‘randomized’ estimator in
SRSWOR with due consideration to the fact that the ex-
pected number of distinct units in a with-replacement
sample need not be an integer. This ‘randomized’ es-
timator defined by

¥ [E(v)] With probability Py
YE®) = - -
y [Equy] + 1 with probability P
has the variance given by
V(y Ew) = {2 E@]+1-E@)(E@I(EW)]+1)
- (IN)} §7 |
where P1 = 1-E(v) + [E (v)], P2 = E(v) - [E(v)] and
(2] denotes the integral part of z.

It may be pertinent to point out that, in the above
context, the qualifier ‘randomized’ seems to be a mis-
nomer, and hence we would instead like to call
y*E(v) an estimator based on a randomized sample size
(rss).

Using an estimator with rss for each sub-sample of
size n'/k (o is clhosen as explained in Section 2.1), we

can strainghtaway write the new variance in TIIS as



Vs = Uk {(@[m] + 1-m)/ ([m] ([m]+1))
- (UN)}$?
wherem' = n /k = N(1 - ( 1- (UN)) V),

It can easily be verified that V'3 >V'3 where V'3
has the same meaning as in the last section and is given
by(4.1),i.e., V'3 stands for the variance obtained without
regard to non-integer sample sizes.

To determine the effect of showing consideration to
non-integer sample sizes, we shall examine the relative
increase in V'3 given by

L=(V3/NV3-1={m'/@1-@m/N)}

(2] + 1-m)/ ([me] ([m*]+1))) -1}.
Settingm = x + awherexis the integral part of m’ and
ais the fractional part lying between 0 and 1, we get after
some simplification '

I = [(a(-a)) / (x(x+ 1) ][ 1- (x+a)/N) ] ™.

5.1)
Obviously, I> will be zero if m” is an integer. Assuming
N to be large enough as compared to m', I can be ap-
proximated by

I = [a(1-a) ] / [x(x+1)] (5.2)

We shall now study the behavioﬁr of I expréssed by (5.2)
for non-integer values of m". For this purpose, we first
of all notice that the suprémum of I, given x,is ata =
1/2, while the unconditional supremum is at a = 1/2 and
x = 1. Furthermore, the functionly, for a given x, is sym-
metric about x + 1/2. It can also be easily seen that the
function I, which is ameasure of inflation in A% arising
out of consideration to non-integer sample sizes, yields
values all below or equal to 1% if m" exceeds 5. Also,
less than 1% inflation occurs even for non-integer m <
5ifm’ is close to an integer or it assumes values avoid-
ing a certain range (depending on x) around x + 1/2

(x = 1,2,3 and 4). It may be mentioned that these ob-

servations apply equally well to the case of SRSWOR
which occurs fork = 1.

If need be, the multiplying factor (1-((x + a)/N))!
in (5.1) could be brought into consideration to adjust the
earlier computations. Here, it may be noted that an in-
creasein N, for agiven m’,is accompanied by a decrease

in Iz,

6. TIIS with distinct units versus SRSWOR

This section is intended to bring out some features
of a comparison between an estimator yp in TIIS defined
as an average of distinct units in k sub-samples of equal
size 1 (=n"/k) drawn independently according to
SRSWOR and the SRSWOR estimator by observing the
same cost consideration as before. In view of certain ob-
vious difficulties in evaluating the combinatorial
varinace expression for the former estimator, it is
desirable to prepare a separate table to facilitate an exact
comparison between these two estimators for ap-
propriate values of n’ and k so that is an integer.

The variance of yp is given by

(Ner\ ©
1 N1 {1
V1S (D) = 3, s2.
{NYk r=1 N-r
\1)

[See Pathak (1964) and Agrawal] (1981).]

If o is the sample size in TIIS, then we know from
Section 2.2 that the sample size“n’ in SRSWOR is deter-
mined by

o’ = N[1-(1-(n /kN))¥].

The variance of the SRSWOR estimator of the
popu[atio;; mean is then obtained as

V’sRswoR = [(N-n’)/Nn’} §?

= {[1-'AN)] ¥/ N[1- (1-(a"/kN))*] } 82
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An asymptotically interesting result follows if
N-> o,k-> o and [lk(=n*)/N]-> fo.
Under these conditions
NS2Vrns ) ->[1/ (ef‘,)-l) ]
and
NSZV’srswoRr -> [ 1/ ( e'°-1)].

For fixed k and large N, the difference of the two varian-

ces will be obtained as

VTuS(D) - V’sRsWOR = [1/2N] [ (k-1)/k(kl-1)] S,
to terms of order N1,

To illustrate the above, we have computed the rela-

tive efficiency in the following table.

V’SRSWOR/VTIIS(D)

(n N) n /N k=2 k=4
(8,80) 0.1 0.9963 0.9944
(20,000) 0.1 0.9986 0.9979
(40,000) 0.1 0.9993 0.9990
(16,80) 02 0.9963 0.9946
(40,200) 02 0.9986 0.9979
(80,400) 02 - 0.9993 0.9990
(40,80) .05 0.9958 0.9941
(100,200) 0.5 0.9984 0.9977
(200,400) 0.5 0.9992 0.9988

Subject to the cost aspect under consideration, the
above table points to the fact that the estimator based on

distinct units in TIIS is almost as efficient as the
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SRSWOR estimator. It is, further, clear from the table
that the relative performce of the two estimators for a
given population of size N is hardly affected by'a change

in the valuq of the n‘/N.
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